Seduction of Finding Universality in Sputtering Yields Due to Cluster Bombardment of Solids.

نویسندگان

  • Robert J Paruch
  • Zbigniew Postawa
  • Barbara J Garrison
چکیده

Universal descriptions are appealing because they simplify the description of different (but similar) physical systems, allow the determination of general properties, and have practical applications. Recently, the concept of universality has been applied to the dependence of the sputtering (ejection) yield due to energetic cluster bombardment versus the energy of the incident cluster. It was observed that the spread in data points can be reduced if the yield Y and initial projectile cluster kinetic energy E are expressed in quantities scaled by the number of cluster atoms n, that is, Y/n versus E/n. The convergence of the data points is, however, not perfect, especially when the results for molecular and atomic solids are compared. In addition, the physics underlying the apparent universal dependence in not fully understood. For the study presented in this Account, we performed molecular dynamics simulations of Arn cluster bombardment of molecular (benzene, octane, and β-carotene) and atomic (Ag) solids in order to address the physical basis of the apparent universal dependence. We have demonstrated that the convergence of the data points between molecular and atomic solids can be improved if the binding energy of the solid U0 is included and the dependence is presented as Y/(E/U0) versus (E/U0)/n. As a material property, the quantity U0 is defined per the basic unit of material, which is an atom for atomic solids and a molecule for molecular solids. Analogously, the quantity Y is given in atoms and molecules, respectively. The simulations show that, for almost 3 orders of magnitude variation of (E/U0)/n, there are obvious similarities in the ejection mechanisms between the molecular and atomic solids, thus supporting the concept of universality. For large (E/U0)/n values, the mechanism of ejection is the fluid flow from a cone-shaped volume. This regime of (E/U0)/n is generally accessed experimentally by clusters with hundreds of atoms and results in the largest yields. For molecular systems, a large fraction of the total energy E is consumed by internal excitation and molecular fragmentation, which are energy loss channels not present in atomic solids. For small (E/U0)/n values, the cluster deforms the surface and the ejection occurs from a ring-shaped ridge of the forming crater rim. This regime of (E/U0)/n is generally accessed experimentally by clusters with thousands of atoms and results in the smallest yields. For the molecular systems, there is little or no molecular fragmentation. The simulations indicate, however, that the representation which includes U0 as the only material property cannot be completely universal, because there are other material properties which influence the sputtering efficiency. Furthermore, neither the Y/n nor Y/(E/U0) representation includes the energy loss physics associated with molecular fragmentation in the high (E/U0)/n regime. The analysis of the universal concept implies for practical applications that if the objective of the experiment is large material removal, then the high energy per cluster atom regime is applicable. If the objective is little or no molecular fragmentation in organic materials, then the low energy per atom regime is appropriate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Universality in Sputtering Yields Due to Cluster Bombardment.

Molecular dynamics simulations, in which atomic and molecular solids are bombarded by Arn (n = 60-2953) clusters, are used to explain the physics that underlie the "universal relation" of the sputtering yield Y per cluster atom versus incident energy E per cluster atom (Y/n vs E/n). We show that a better representation to unify the results is Y/(E/U0) versus (E/U0)/n, where U0 is the sample coh...

متن کامل

Energetic ion bombardment of Ag surfaces by C60+ and Ga+ projectiles.

The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all...

متن کامل

Sputtering of Ices: a Review

The sputtering of low temperature rare-gas and molecular-gas solids by ion bombardment occurs through two different routes. Collision cascades initiated by momentum transferring collisions of ions with atoms of the solid are effective as they are in metals. The apparent surface binding energy is, however, much lower than the sublimation energy and there is a substantial low energy component to ...

متن کامل

Simulation of cluster ejection following high - energy Au n Au ( 111 ) bombardment

Following the recent report by Andersen et al. of extremely large nonlinear sputtering yields caused by the bombardment of gold targets with small, high energy gold clusters [Phys. Rev. Lett. 80 (1998) 5433], we carried out simulations showing: (1) that the thermal spike phase of the collision cascade contributes significantly to these nonlinear yields; and (2) that individual 'mega-events' wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 48 9  شماره 

صفحات  -

تاریخ انتشار 2015